159 research outputs found

    Reaction Brownian Dynamics and the effect of spatial fluctuations on the gain of a push-pull network

    Full text link
    Brownian Dynamics algorithms are widely used for simulating soft-matter and biochemical systems. In recent times, their application has been extended to the simulation of coarse-grained models of cellular networks in simple organisms. In these models, components move by diffusion, and can react with one another upon contact. However, when reactions are incorporated into a Brownian Dynamics algorithm, attention must be paid to avoid violations of the detailed-balance rule, and therefore introducing systematic errors in the simulation. We present a Brownian Dynamics algorithm for reaction-diffusion systems that rigorously obeys detailed balance for equilibrium reactions. By comparing the simulation results to exact analytical results for a bimolecular reaction, we show that the algorithm correctly reproduces both equilibrium and dynamical quantities. We apply our scheme to a ``push-pull'' network in which two antagonistic enzymes covalently modify a substrate. Our results highlight that the diffusive behaviour of the reacting species can reduce the gain of the response curve of this network.Comment: 25 pages, 7 figures, submitted to Journal of Chemical Physic

    Distinguishing low frequency mutations from RT-PCR and sequence errors in viral deep sequencing data

    Get PDF
    There is a high prevalence of coronary artery disease (CAD) in patients with left bundle branch block (LBBB); however there are many other causes for this electrocardiographic abnormality. Non-invasive assessment of these patients remains difficult, and all commonly used modalities exhibit several drawbacks. This often leads to these patients undergoing invasive coronary angiography which may not have been necessary. In this review, we examine the uses and limitations of commonly performed non-invasive tests for diagnosis of CAD in patients with LBBB

    Accurate and highly interpretable prediction of gene expression from histone modifications

    Get PDF
    Histone Mark Modifications (HMs) are crucial actors in gene regulation, as they actively remodel chromatin to modulate transcriptional activity: aberrant combinatorial patterns of HMs have been connected with several diseases, including cancer. HMs are, however, reversible modifications: understanding their role in disease would allow the design of 'epigenetic drugs' for specific, non-invasive treatments. Standard statistical techniques were not entirely successful in extracting representative features from raw HM signals over gene locations. On the other hand, deep learning approaches allow for effective automatic feature extraction, but at the expense of model interpretation

    Eliminating fast reactions in stochastic simulations of biochemical networks: a bistable genetic switch

    Full text link
    In many stochastic simulations of biochemical reaction networks, it is desirable to ``coarse-grain'' the reaction set, removing fast reactions while retaining the correct system dynamics. Various coarse-graining methods have been proposed, but it remains unclear which methods are reliable and which reactions can safely be eliminated. We address these issues for a model gene regulatory network that is particularly sensitive to dynamical fluctuations: a bistable genetic switch. We remove protein-DNA and/or protein-protein association-dissociation reactions from the reaction set, using various coarse-graining strategies. We determine the effects on the steady-state probability distribution function and on the rate of fluctuation-driven switch flipping transitions. We find that protein-protein interactions may be safely eliminated from the reaction set, but protein-DNA interactions may not. We also find that it is important to use the chemical master equation rather than macroscopic rate equations to compute effective propensity functions for the coarse-grained reactions.Comment: 46 pages, 5 figure

    Using combined evidence from replicates to evaluate ChIP-seq peaks

    Get PDF
    Motivation: Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) detects genome-wide DNA–protein interactions and chromatin modifications, returning enriched regions (ERs), usually associated with a significance score. Moderately significant interactions can correspond to true, weak interactions, or to false positives; replicates of a ChIP-seq experiment can provide co-localised evidence to decide between the two cases. We designed a general methodological framework to rigorously combine the evidence of ERs in ChIP-seq replicates, with the option to set a significance threshold on the repeated evidence and a minimum number of samples bearing this evidence. Results: We applied our method to Myc transcription factor ChIP-seq datasets in K562 cells available in the ENCODE project. Using replicates, we could extend up to 3 times the ER number with respect to single-sample analysis with equivalent significance threshold. We validated the ‘rescued’ ERs by checking for the overlap with open chromatin regions and for the enrichment of the motif that Myc binds with strongest affinity; we compared our results with alternative methods (IDR and jMOSAiCS), obtaining more validated peaks than the former and less peaks than latter, but with a better validation. Availability and implementation: An implementation of the proposed method and its source code under GPLv3 license are freely available at http://www.bioinformatics.deib.polimi.it/MSPC/ and http://mspc.codeplex.com/, respectively. Contact: [email protected] Supplementary information: Supplementary Material are available at Bioinformatics online

    MuSERA: Multiple sample enriched region assessment

    Get PDF
    Enriched region (ER) identification is a fundamental step in several next-generation sequencing (NGS) experiment types. Yet, although NGS experimental protocols recommend producing replicate samples for each evaluated condition and their consistency is usually assessed, typically pipelines for ER identification do not consider available NGS replicates. This may alter genome-wide descriptions of ERs, hinder significance of subsequent analyses on detected ERs and eventually preclude biological discoveries that evidence in replicate could support. MuSERA is a broadly useful stand-alone tool for both interactive and batch analysis of combined evidence from ERs in multiple ChIP-seq or DNase-seq replicates. Besides rigorously combining sample replicates to increase statistical significance of detected ERs, it also provides quantitative evaluations and graphical features to assess the biological relevance of each determined ER set within its genomic context; they include genomic annotation of determined ERs, nearest ER distance distribution, global correlation assessment of ERs and an integrated genome browser.We review MuSERA rationale and implementation, and illustrate how sets of significant ERs are expanded by applying MuSERA on replicates for several types of NGS data, including ChIP-seq of transcription factors or histone marks and DNase-seq hypersensitive sites. We show that MuSERA can determine a new, enhanced set of ERs for each sample by locally combining evidence on replicates, and prove how the easy-to-use interactive graphical displays and quantitative evaluations that MuSERA provides effectively support thorough inspection of obtained results and evaluation of their biological content, facilitating their understanding and biological interpretations. MuSERA is freely available at http://www.bioinformatics.deib.polimi.it/MuSERA/

    Selective transcriptional regulation by Myc: Experimental design and computational analysis of high-throughput sequencing data

    Get PDF
    AbstractThe gene expression programs regulated by the Myc transcription factor were evaluated by integrated genome-wide profiling of Myc binding sites, chromatin marks and RNA expression in several biological models. Our results indicate that Myc directly drives selective transcriptional regulation, which in certain physiological conditions may indirectly lead to RNA amplification. Here, we illustrate in detail the experimental design concerning the high-throughput sequencing data associated with our study (Sabò et al., Nature. (2014) 511:488–492) and the R scripts used for their computational analysis

    Pricing financial derivatives with neural networks

    Get PDF
    Abstract Neural network algorithms are applied to the problem of option pricing and adopted to simulate the nonlinear behavior of such financial derivatives. Two different kinds of neural networks, i.e. multi-layer perceptrons and radial basis functions, are used and their performances compared in detail. The analysis is carried out both for standard European options and American ones, including evaluation of the Greek letters, necessary for hedging purposes. Detailed numerical investigation show that, after a careful phase of training, neural networks are able to predict the value of options and Greek letters with high accuracy and competitive computational time

    Beyond the consensus: dissecting within-host viral population diversity of foot-and-mouth disease virus using next-generation genome sequencing

    Full text link
    The sequence diversity of viral populations within individual hosts is the starting material for selection and subsequent evolution of RNA viruses such as foot-and-mouth disease virus (FMDV). Using next-generation sequencing (NGS) performed on a Genome Analyzer platform (Illumina), this study compared the viral populations within two bovine epithelial samples (foot lesions) from a single animal with the Inoculum used to initiate experimental infection. Genomic sequences were determined in duplicate sequencing runs, and the consensus sequence determined by NGS, for the Inoculum, was identical to that previously determined using the Sanger method. However, NGS reveals the fine polymorphic sub-structure of the viral population, from nucleotide variants present at just below 50% frequency to those present at fractions of 1%. Some of the higher frequency polymorphisms identified encoded changes within codons associated with heparan sulphate binding and were present in both feet lesions revealing intermediate stages in the evolution of a tissue-culture adapted virus replicating within a mammalian host. We identified 2,622, 1,434 and 1,703 polymorphisms in the Inoculum, and in the two foot lesions respectively: most of the substitutions occurred only in a small fraction of the population and represent the progeny from recent cellular replication prior to onset of any selective pressures. We estimated an upper limit for the genome-wide mutation rate of the virus within a cell to be 7.8 x 10-4 per nt. The greater depth of detection, achieved by NGS, demonstrates that this method is a powerful and valuable tool for the dissection of FMDV populations within-hosts
    • …
    corecore